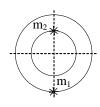
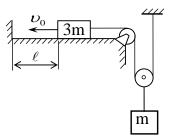
Первый (отборочный) этап академического соревнования Олимпиады школьников «Шаг в будущее» по общеобразовательному предмету «Физика», осень 2017 г.

Вариант № 4

ЗАДАЧА 1.


Снаряд вылетает из ствола с угловой скоростью вращения $\omega = 3 \cdot 10^3 \ c^{-1}$ сделав внутри ствола n=2 оборота. Длина ствола $\ell=1,0$ м. Считая движение снаряда в стволе равноускоренным, найдите скорость снаряда в момент вылета .

ЗАДАЧА 2.


Самолёт совершает вираж, двигаясь по окружности радиуса R=7 км на одной и той же высоте. Определите с какой постоянной скоростью движется самолёт, если плоскость крыла самолёта наклонена к горизонтальной плоскости под постоянным углом $\alpha=30^{\circ}$.

ЗАДАЧА 3.

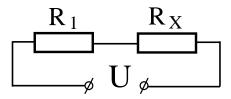
Массы двух звезд равны $m_1 = m$ и $m_2 = 8m$, расстояние между ними равно ℓ . Найдите период T обращения этих звезд по круговым орбитам вокруг их общего центра .

ЗАДАЧА 4

В системе, изображённой на рисунке, груз m висит на подвижном блоке, а другой груз массы 3m лежит на горизонтальной плоскости. В начальный момент груз 3m находится на расстоянии ℓ от вертикальной стенки, движется к ней с начальной скоростью υ_0 и ударяется о неё. Считая удар груза о стенку абсолютно неупругим,

определите максимальную высоту Н, на которую поднимется груз, подвешенный к блоку, от начального положения. Нить считать нерастяжимой. Трением и массой нити и блоков пренебречь.

ЗАДАЧА 5.

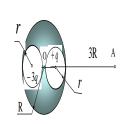

Две свинцовые пули, массы которых m и 3m, летящие с одинаковыми скоростями υ во взаимно перпендикулярных направлениях, испытали абсолютно неупругий удар. Найдите количество теплоты, которое выделится в результате этого удара.

ЗАДАЧА 6.

Рабочим веществом идеальной тепловой машины, работающей по циклу Карно, является один моль идеального одноатомного газа. КПД цикла известен и равен η . Определите температуру холодильника, если работа, которую совершает газ при адиабатическом расширении, равна A.

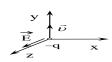
ЗАДАЧА 7.

Внутри незаряженного металлического шара радиусом R имеются две сферические



полости радиусами $r < 0.5 \cdot R$, расположенные таким образом, что их поверхности почти соприкасаются в центре О шара. В центре одной полости поместили заряд отрицательный заряд -3q, а затем в центре другой - положительный заряд +q.

Найдите модуль и направление вектора напряжённости \vec{E} электростатического поля в точке A, находящейся на расстоянии 3R от центра O шара на линии, соединяющей центры полостей.


ЗАДАЧА 8.

Отрицательно заряженная частица движется с постоянной скоростью \vec{v} вдоль оси у в стационарном однородном электромагнитном поле. Определите модуль и направление вектора магнитной индукции \vec{B} , если вектор напряжённости электрического поля \vec{E} направлен вдоль оси z.

ЗАДАЧА 9.

Сопротивления $R_1 = 5~\rm Om~u$ изменяемое сопротивление R_X , подключены к источнику постоянного напряжения $U = 10~\rm B$. Найдите значение сопротивления R_X , при котором на нём выделяется максимальная тепловая мощность, и значение этой мощности.

ЗАДАЧА 10.

Из тонкого провода сделано кольцо радиуса R . По кольцу течет ток , а перпендикулярно плоскости кольца возбуждено однородное магнитное поле с индукцией B . Определите плотность тока j, при которой кольцо разорвётся, если разрыв провода происходит , когда механическое напряжение в любом его сечении достигает значения σ_m . Магнитным полем тока пренебречь

Решение варианта № 4

ЗАДАЧА 1.

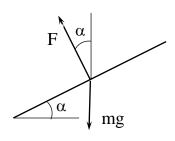
Otbet:
$$\upsilon_{\text{max}} = \frac{\ell \, \omega_{\text{max}}}{2\pi \cdot n} \approx 239 \, \text{ m/c}$$

Для равноускоренного вращательного движения снаряда

$$arphi = rac{1}{2}\, \omega_{
m max} \, au \, \, , \; \; \, \, {
m otkyda}. \quad \, au = rac{2arphi}{\omega_{
m max}}$$

Здесь au - время движения снаряда в стволе пушки.

Аналогично, для равноускоренного движения скорость $\ell = \frac{1}{2} \upsilon_{\max} \tau$, откуда


$$\upsilon_{\max} = \frac{2\ell}{\tau} = \frac{\ell \omega_{\max}}{2\pi \cdot n} = \frac{1 \cdot 2 \cdot 10^3}{2 \cdot 3,14 \cdot 2} \approx 239 \text{ m/c}.$$

ЗАДАЧА 2.

Other:
$$\upsilon = \sqrt{Rg \cdot tg \alpha} \approx 200 \ \text{M/c} \ (720 \ \text{KM/H})$$
.

Из условия горизонтальности полёта $F\cos\alpha = mg$, откуда

 $F = \frac{mg}{\cos lpha}$ - сила, действующая на крылья самолёта перпендикулярно

их плоскости.

Используя второй закон Ньютона для движения по окружности

радиуса R , запишем $\frac{mv^2}{R} = F \sin \alpha$.

$$\frac{m\upsilon^2}{R} = \frac{mg}{\cos\alpha}\sin\alpha = mg\cdot tg\alpha$$
, $\frac{m\upsilon^2}{R} = mg\cdot tg\alpha$, откуда $\upsilon = \sqrt{Rg\cdot tg\alpha}$.

$$\upsilon = \sqrt{7 \cdot 10^3 \cdot 10 \cdot \frac{1}{\sqrt{3}}} \approx 200 \ \text{m/c} \ (720 \ \text{km/y})$$

ЗАДАЧА 3.

Otbet:
$$T = \frac{2}{3} \pi \ell \sqrt{\frac{\ell}{mG}}$$
.

ЗАДАЧА 4.

OTBET:
$$H = \frac{{\upsilon_0}^2}{2g} + \frac{9}{26} \ell$$

Используя закон сохранения энергии, получим:

$$H = \frac{\ell}{2} + \frac{\upsilon^2}{2g} = \frac{{\upsilon_0}^2}{2g} + \frac{9}{26}\,\ell$$
 , где $\,\upsilon$ - скорость груза массы m в момент удара о стенку.

ЗАДАЧА 5.

Other:
$$Q = \frac{3}{4}mv^2$$
.

По закону сохранения импульса $\vec{p}_1 + \vec{p}_2 = \vec{p}$, где $p_1 = m \upsilon$, $p_2 = 3m \upsilon$,

$$p = (m+3m)u = 4mu$$
.

$$4m \cdot u = \sqrt{(m\upsilon)^2 + (3m\upsilon)^2} = m\upsilon\sqrt{10}; \qquad u = \frac{\upsilon\sqrt{10}}{4}.$$

Суммарная кинетическая энергия до удара $E_1 = \frac{m}{2} \upsilon^2 + \frac{3m}{2} \upsilon^2 = 2m\upsilon^2$,

Кинетическая энергия обеих пуль после удара $E_2 = \frac{m+3m}{2}u^2 = 2m\frac{5\upsilon^2}{8} = \frac{5}{4}m\upsilon^2$.

Таким образом, количество теплоты, выделившееся при ударе, равно

$$Q = E_1 - E_2 = 2mv^2 - \frac{5}{4}mv^2 = \frac{3}{4}mv^2$$
.

ЗАДАЧА 6.

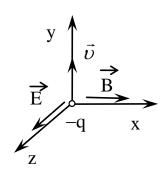
Otbet:
$$T_2 = \frac{2(1-\eta)A}{3R\eta}.$$

ЗАДАЧА 7.

Ответ:
$$E = -\frac{q}{18\pi\varepsilon_0 R^2}$$
 Вектор \vec{E} направлен к центру шара.

ЗАДАЧА 8.

Ответ: На рисунке .


$$B = \frac{E}{\upsilon}$$

ЗАДАЧА 9.

Other:
$$R_x = 5 O_M$$
; $P_{max} = 5 Bm$

ЗАДАЧА 10.

Otbet:
$$J_{\text{max}} = \frac{\sigma_{\text{max}}}{B \cdot R}$$
.

