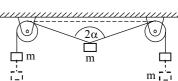
Второй (заключительный) этап академического соревнования


Олимпиады школьников «Шаг в будущее» по общеобразовательному предмету «Физика»

Весна, 2016 г.

Вариант № 15.

ЗАДАЧА1.

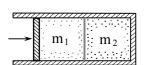
Тело, движущееся равноускоренно с начальной скоростью $\upsilon_1 = 2 \ m/c$, пройдя некоторое расстояние ℓ , приобретает скорость $\upsilon_2 = 10 \ m/c$. Найдите скорость υ этого тела на расстоянии, равном $\ell/4$ от конечной точки движения.

ЗАЛАЧА2.

Через два маленьких неподвижных блока, оси которых находятся на одной высоте на расстоянии 1м друг от друга, перекинута нить. К концам и к середине нити привязаны три одинаковых груза. Средний груз поднимают так, чтобы нить была горизонтальна, а сам груз находился посередине между блоками, и отпускают, после чего средний груз опускается, а крайние поднимаются. Найдите скорость крайних грузов в тот момент, когда средние части нити между блоками образуют угол $2\alpha = 90^{\circ}$? Трением пренебречь.

ЗАДАЧАЗ.

Два одинаковых шара массы m каждый лежат на абсолютно гладкой горизонтальной плоскости, соприкасаясь друг с другом. Третий шар, таких же размеров, скользящий по той же плоскости, ударяется одновременно в оба шара. Считая удар абсолютно упругим, найдите массу M налетающего шара,

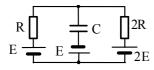

если после удара он продолжает двигаться в том же направлении со скоростью, равной половине скорости шара до удара.

ЗАДАЧА4.

В сосуде с подвижным поршнем находится мыльный пузырь радиуса r. Медленно выдвигая поршень, давление воздуха в сосуде уменьшают так, что радиус пузыря увеличивается вдвое. Найдите давление воздуха в сосуде вне пузыря в этот момент, если давление воздуха в сосуде вне пузыря в исходном состоянии было равно P_0 . Процесс считать изотермическим. Коэффициент поверхностного натяжения мыльной плёнки равен σ .

ЗАДАЧА5.

В закреплённом теплоизолированном цилиндре, разделённом на две части неподвижной теплопроводящей перегородкой и закрытом слева

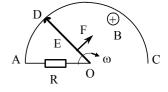


подвижным поршнем, не проводящим тепло, находится в левой части газ гелий массы m_1 = 40 г, а в правой части — газ неон массы m_2 = 100 г. Давление на поршень медленно увеличивают, начиная с некоторого начального значения. Найдите молярную теплоёмкость газа в левой части цилиндра в данном процессе, считая, что температура газа в процессе сжатия в левой и правой частях цилиндра одинаковая. Трением пренебречь.

ЗАДАЧА6.

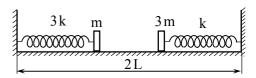

Металлический шарик радиуса R с положительным зарядом +q находится внутри тонкостенной металлической сферы радиуса 2R. Центры шарика и металлической сферы совпадают. Сфере сообщили отрицательным заряд -2q. Шарик и сферу соединили тонким проводником ничтожной ёмкости и затем разъединили. Найдите разность потенциальных энергий ΔW конечного и начального состояния системы .

ЗАДАЧА7.


Определите заряды на конденсаторах в схеме, изображённой на рисунке. Параметры элементов цепи считать известными. Внутренним сопротивлением источников пренебречь.

3 А Д **А Ч А 8.** Вогнутое зеркало наполнено водой . Зная, что радиус кривизны зеркала равен 40 см, а показатель преломления воды равен 4/3 , найдите фокусное расстояние этой системы.

ЗАДАЧА9.


Контур состоит из участка OA с сопротивлением R , полукольца AC и стержня OD сопротивлением R и длины L, который может скользить по полукольцу, вращаясь вокруг его центра - точки O. Сопротивления

остальных участков контура и скользящего контакта пренебрежимо малы. Контур помещен в однородном магнитном поле с индукцией В, линии которой перпендикулярны плоскости контура. Найдите модуль минимальной силы F, которую надо приложить к стержню на расстоянии 1/3L от точки О, чтобы вращать его с постоянной угловой скоростью ω.

3 А Д А Ч А 10.

В системе, изображённой на рисунке, прикреплённые к невесомым пружинам грузики при помощи нитей удерживаются на расстояниях L/2 от стенок, к которым

прикреплены концы пружин. Длины обеих пружин в недеформированном состоянии одинаковы и равны L. Нити одновременно пережигают, после чего грузики сталкиваются и слипаются. Найдите

максимальную скорость, которую будут иметь грузики при колебаниях, возникших после этого столкновения. Удар при столкновении является центральным. Жёсткости пружин и массы грузиков указаны на рисунке. Трением и размерами грузиков пренебречь.

Решение варианта № 15

3 А Д А Ч А 1. (8 баллов)

Other:
$$v = \frac{1}{2} \sqrt{3v_1^2 + v_2^2} = 8.7 \text{ m/c}$$
.

3 А Д А Ч А 2. (8 баллов)

Other:
$$v = \sqrt{\frac{g(h-2c)}{\cos^2 \alpha + \frac{1}{2}}} \cdot \cos \alpha = 0.58 \ \text{m/c}.$$

Из закона сохранения механической энергии следует, что

$$2\frac{mv^{2}}{2} + \frac{mv_{1}^{2}}{2} = mgh - 2mgc, (1)$$

где с и h – перемещения крайних и среднего грузов. Из рисунка видно, что

$$c=rac{\ell}{2}igg(rac{1}{\sinlpha}-1igg)$$
. $h=rac{\ell}{2}ctglpha$. $arphi=arphi_1\coslpha$. Подставляя значения c,h и $arphi$ в (1) , найдём

$$\upsilon = \sqrt{\frac{g(h-2c)}{\cos^2 \alpha + \frac{1}{2}}} \cdot \cos \alpha = 0.58 \ \text{m/c} \ .$$

3 А Д А Ч А 3. (10 баллов)

Otbet:
$$M = 4.5 \ m$$

Исходя из закона сохранения кинетической энергии

$$\boxed{\frac{M{\upsilon_0}^2}{2} = \frac{M}{2} \left(\frac{\upsilon_0}{2}\right)^2 + 2\frac{m}{2}\upsilon^2}$$
(1)

По закону сохранения импульса, $M \upsilon_0 = M \frac{\upsilon_0}{2} + 2m\upsilon \cdot \cos 30^\circ$. (2)

Решая совместно уравнения (1) и (2): находим, $M = 4.5 \, m$

3 А Д А Ч А 4. (10 баллов)

OTBET:
$$P = \frac{P_0}{8} - \frac{3\sigma}{2r}$$
.

Начальное давление в сосуде равно P_0 . При этом давление внутри мыльного пузыря за счёт сил поверхностного натяжения больше на величину $\Delta\,P_1=\frac{4\,\sigma}{r}$, где σ - коэффициент поверхностного натяжения мыльной плёнки. То есть давление внутри пузыря $P_1=P_0+\Delta P_1=P_0+\frac{4\sigma}{r}$.

Так как объём пузыря увеличился в 8 раз, то конечное давление в пузыре уменьшится в 8 раз, то

есть
$$P_2 = \frac{P_1}{8} = \frac{\left(P_0 + \frac{4\sigma}{r}\right)}{8} = \frac{P_0}{8} + \frac{\sigma}{2r}$$
.

Но
$$P = P_2 - \Delta P_2$$
, где $\Delta P_2 = \frac{4\sigma}{2r} = \frac{2\sigma}{r}$; Тогда $P = P_2 - \Delta P_2 = P_2 - \frac{2\sigma}{r}$

Конечное давление в сосуде
$$P = P_2 - \Delta P_2 = \frac{P_0}{8} + \frac{\sigma}{2r} - \frac{2\sigma}{r} = \frac{P_0}{8} - \frac{3\sigma}{2r}$$
. $P = \frac{P_0}{8} - \frac{3\sigma}{2r}$

3 А Д А Ч А 5. (10 баллов)

Otbet:
$$C_{\mu} = -\frac{3}{2} \frac{m_2 \mu_1}{m_1 \mu_2} R = -6.2 \frac{\text{Дж}}{\text{моль} \cdot K}$$

При сжатии газа температура в левой и правой частях цилиндра будет одинаковая, поскольку перегородка теплопроводящая, а процесс медленный. К газу в правой части цилиндра подводится количество теплоты $Q_2=\frac{3}{2}\frac{m_2}{\mu_2}R\Delta T$, . Это тепло отводится от левой части газа массой m_1 :

 $Q_1 = -Q_2 = -rac{3}{2}rac{m_2}{\mu_2}R\Delta T$. Поэтому теплоёмкость газа в левой части цилиндра в рассматриваемом

процессе отрицательна и равна $C = -\frac{Q_1}{\Delta T} = -\frac{3}{2} \frac{m_2}{\mu_2} R$, а его молярная теплоёмкость равна

$$C_{\mu} = -\frac{C}{m_1 / \mu_1} = -\frac{3}{2} \frac{m_2 \mu_1}{m_1 \mu_2} R = -6.2 \frac{\mathcal{Д}$$
жоль · K

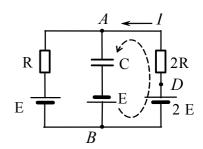
3 А Д А Ч А 6. (10 баллов)

Otbet:
$$\Delta W = -\frac{q^2}{16\pi\varepsilon_0 \cdot R}.$$

Собственная энергия шарика $W_1 = k \frac{1}{2} \cdot \frac{q^2}{R} = k \frac{q^2}{2R}$, а собственная энергия сферы

$$W_2 = k \frac{1}{2} \cdot \frac{(-2q)^2}{2R} = k \frac{q^2}{R}$$
 . Энергия взаимодействия $W_{12} = k \cdot \frac{q(-2q)}{2R} = -k \frac{q^2}{R}$

Полная электрическая энергия системы


$$W' = W_1 + W_2 + W_{12} = k \frac{q^2}{R} \left(\frac{1}{2} + 1 - 1 \right) = k \frac{q^2}{2R}$$

После соединении шарика и сферы проводником энергия системы $W'' = k \frac{(q-2q)^2}{2 \cdot 2R} = k \frac{q^2}{4 \cdot R}$

Тогда разность потенциальных энергий конечного и начального состояний системы

$$\Delta W = W'' - W' = k \left(\frac{q^2}{4R} - \frac{q^2}{2R} \right) = -k \frac{q^2}{4R} = -\frac{q^2}{4\pi\varepsilon_0 \cdot 4R} = \frac{q^2}{16\pi\varepsilon_0 \cdot R}.$$

Энергия системы уменьшилась на $\Delta W = -\frac{q^2}{16\pi\varepsilon_0\cdot R}$.

3 А Д А Ч А 7. (10 баллов)

OTBET:
$$W = \frac{49}{18}CE^2$$
.

3 А Д А Ч А 8. (10 баллов)

Other:
$$F = \frac{1}{D} = \frac{3R}{8} = 0.15M$$

 $D=D_1+D_2+D_1=2D_1+D_2\,$, где ${\rm D}_1-{\rm ontru}$ ческая сила водяной линзы, а ${\rm D}_2-{\rm зер}$ кала. Но

$$D_1 = (n-1)\left(\frac{1}{R} + \frac{1}{\infty}\right) = \frac{1}{3R}; \ D_2 = \frac{2}{R}. \ D = 2\frac{1}{3R} + \frac{2}{R} = \frac{8}{3R} \ \text{Поэтому} \ F = \frac{1}{D} = \frac{3R}{8} = 0,15 \text{м}$$

3 А Д А Ч А 9. (12 баллов).

Otbet:
$$F \cdot = \frac{3B^2 \cdot L^3 \omega}{8R}$$
.

При вращения стержня ОD в контуре возникает ЭДС индукции $E = -\frac{1}{2}BL^2\omega$. При постоянной угловой скорости вращения стержня мощность силы F, действующей на стержень, равна электрической мощности, выделяющейся в контуре, то есть $F\upsilon = I^2 \cdot 2R$, (1) где $\upsilon = \frac{\omega \cdot L}{3}$ (2).

То есть
$$\frac{F \cdot \omega \cdot L}{3} = \frac{B^2 \cdot L^4 \omega^2}{16R^2} 2R = \frac{B^2 \cdot L^4 \omega^2}{8R}$$
, откуда $F \cdot = \frac{3B^2 \cdot L^3 \omega}{8R}$.

3 А Д А Ч А 10. (12 баллов)

Otbet:
$$v_{\text{max}} = \frac{L}{4} \sqrt{2 \frac{k}{m}}$$
.

После пережигания нитей левый грузик будет двигаться по закону $x_1(t)=-\frac{L}{2}\cos\left(\omega_1 t\right)$ а правый — по закону $x_2(t)=\frac{L}{2}\cos\left(\omega_2 t\right)$ (время t отсчитывается от момента пережигания нитей). Грузики столкнутся через время t $_0$, которое определяется из условия $x_1(t)=x_2(t)$, откуда получаем: $t_0=\frac{\pi}{\omega_1+\omega_2}=\frac{3\pi}{4\omega_1}$ либо $t_0=\frac{\pi}{4\omega_2}$. При этом в момент столкновения грузики будут иметь координату $x_0=\frac{L}{2}\cos\left(\omega_2 t_0\right)=\frac{L}{4}\sqrt{2}$.

В соответствии с законом сохранения импульса скорость грузиков после удара равна нулю. , а удлинения пружин в этот момент отличны от нуля и равны $x_0 = \frac{L}{4}\sqrt{2}$. Следовательно, после столкновения слипшиеся грузики будут совершать гармонические колебания с амплитудой x_0 и с частотой $\omega = \sqrt{\frac{k+3k}{m+3m}} = \sqrt{\frac{k}{m}}$. В процессе этих колебаний максимальная скорость грузиков будет равна $\upsilon_{\max} = \omega \cdot x_0 = \frac{L}{4}\sqrt{\frac{2k}{m}}$.