МГТУ им. Н.Э.Баумана Олимпиада школьников «Шаг в будущее» 10 класс, 1 тур 2014-2015 учебного года.

- 1. Какое из чисел больше $2^{5^{4^3}}$ или $3^{4^{2^5}}$?
- 2. Найти множество значений параметра a, при которых дискриминант уравнения $ax^2 + 2x + 1 = 0$ в 9 раз больше квадрата разности двух его различных корней.
- 3. Даны отрезки a, b, c. Постройте отрезок длины $\frac{ab}{c\sqrt{5}}$ с помощью циркуля и линейки.
- 4. Докажите, что если для неотрицательных чисел x, y, z выполняется условие x+y+z=2015, то $\sqrt{x}+\sqrt{y}+\sqrt{z}<1009$.
- 5. Четырехугольник ABCD вписан в окружность диаметра 17. Диагонали AC и BD перпендикулярны. Найдите стороны AB, BC, CD, если известно, что AD=8 и AB:CD=3:4.
- 6. Найдите площадь многоугольника, ограниченного на координатной плоскости осью абсцисс и графиком функции $y = \left\| ... \right\| \left\| x \right| 1 \left| -2 \right| 3 \left| ... \right| 99 \left| -100 \right|.$

Решение заданий заочного тура 10 класс.

Задача 1. Какое из чисел больше $2^{5^{4^3}}$ или $3^{4^{2^5}}$?

Решение:

$$2^{5^{4^3}} \lor 3^{4^{2^5}} \Leftrightarrow 2^{5^{64}} \lor 3^{4^{32}} \Leftrightarrow 2^{5^{64}} \gt 2^{4^{64}} = 2^{4^{63} \cdot 4} = (2^4)^{4^{63}} = 16^{4^{63}} \gt 3^{4^{63}} \gt 3^{4^{32}}$$

Otbet: $2^{5^{4^3}} > 3^{4^{2^5}}$

Задача 2. Найти множество значений параметра a, при которых дискриминант уравнения $ax^2 + 2x + 1 = 0$ в 9 раз больше квадрата разности двух его различных корней.

Решение. D = 4 - 4a.

$$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2 = \left(\frac{2}{a}\right)^2 - 4 \cdot \frac{1}{a} = \frac{4 - 4a}{a^2} = \frac{D}{a^2}.$$

Получаем уравнение: $\frac{D}{a^2} \cdot 9 = D$. Условию D > 0 удовлетворяет только корень a = -3 .

Ответ: $a \in \{-3\}$.

Задача 3. Даны отрезки a, b, c. Постройте отрезок длины $\frac{ab}{c\sqrt{5}}$ с помощью циркуля и линейки.

Решение.

- 1) Отрезок длины $c\sqrt{5}$ строится как гипотенуза прямоугольного треугольника с катетами c и 2c.
- 2) Отрезок длины $x = \frac{ab}{c\sqrt{5}}$ строится по теореме Фалеса как пропорциональный отрезок, отсекаемый на сторонах угла $\frac{x}{c\sqrt{5}}$ параллельными прямыми из соотношения $\frac{x}{b} = \frac{a}{c\sqrt{5}}$.

Задача 4.

Докажите, что если для неотрицательных чисел x, y, z выполняется условие x+y+z=2015, то $\sqrt{x}+\sqrt{y}+\sqrt{z}<1009$.

Доказательство. Так как для неотрицательных чисел x, y, z выполняется условие x + y + z = 2015, то они одновременно не равны 1. Тогда по неравенству Коши выполняются

строгие неравенства $\frac{x+1}{2} > \sqrt{x}$, $\frac{y+1}{2} > \sqrt{y}$, $\frac{z+1}{2} > \sqrt{z}$. Сложив эти неравенства, получим $\sqrt{x} + \sqrt{y} + \sqrt{z} < \frac{x+y+z+3}{2} = \frac{2015+3}{2} = 1009.$

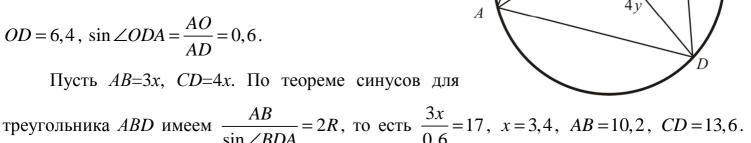
Задача 5.

следовательно, AO:OD=AB:CD=3:4.

Четырехугольник ABCD вписан в окружность диаметра 17. Диагонали AC и BD перпендикулярны. Найдите стороны AB, BC, CD, если известно, что AD = 8 и AB : CD = 3 : 4.

Решение. Треугольники AOB и COD подобны по двум углам (AOB, COD – вертикальные, ABD, ACD – опираются на одну дугу),

Пусть AO = 3y, OD = 4y, тогда, по теореме Пифагора для прямоугольного треугольника AOD имеем $9y^2 + 16y^2 = AD^2 = 64$, откуда y = 1,6, AO = 4,8, OD = 6,4, $\sin \angle ODA = \frac{AO}{AD} = 0,6$.



 $\frac{1}{\sin \angle BDA}$ — 2R, то сеть $\frac{1}{0,6}$ — 17, χ — 3,4, RD — 10,2, CD — 13,0. По теореме Пифагора для прямоугольных треугольников AOB, COD и BOC находим

По теореме Пифагора для прямоугольных треугольников AOB, COD и BOC находим BO = 9, CO = 12, BC = 15.

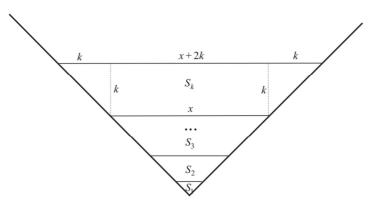
OTBET: AB = 10,2, CD = 13,6, BC = 15.

Задача 6.

Найдите площадь многоугольника, ограниченного на координатной плоскости осью абсцисс и графиком функции $y = \left\| ... \right\| \left\| x \right| - 1 \left| -2 \right| - 3 \left| ... \right| - 99 \left| -100 \right|.$

Решение. Рассмотрим график функции y = |x|. Разделим его горизонтальными прямыми на слои шириной 1, 2, ...100, начиная от вершины. Обозначим площади слоев S_1 , S_2, \ldots, S_{100} , соответственно.

Тогда, площадь многоугольника, ограниченного на координатной плоскости осью абсцисс и графиком функции $y = \left\| ... \right\| \left| x \right| - 1 \left| -2 \right| - 3 \left| ... \right| - 99 \left| -100 \right|$, в силу соответствующих отражений и сдвигов графика $y = \left| x \right|$, будет равна $S = S_{100} - S_{99} + S_{98} - S_{97} + ... + S_2 - S_1$.



Докажем, по индукции, что площадь каждого слоя равна $S_n=n^3$. При n=1 имеем $S_1=\frac{1}{2}\cdot 2\cdot 1=1^3$. Пусть верно, что $S_k=\left(\frac{x+x+2k}{2}\right)k=k^3$, где x — длина меньшего основания трапеции. Из этого равенства имеем, что $x=k^2-k$.

Докажем, что $S_{k+1} = (k+1)^3$. Действительно,

$$S_{k+1} = \left(\frac{x+2k+x+2k+2(k+1)}{2}\right)(k+1) = \left(x+3k+1\right)(k+1) = \left(k^2+2k+1\right)(k+1) = (k+1)^3.$$

Таким образом,

$$S = S_{100} - S_{99} + S_{98} - S_{97} + \dots + S_2 - S_1 = \left(100^3 - 99^3\right) + \left(98^3 - 97^3\right) + \dots + \left(2^3 - 1^3\right).$$

Так как $(n+1)^3 - n^3 = 3n^2 + 3n + 1$, то

$$S = (3 \cdot 99^2 + 3 \cdot 99 + 1) + (3 \cdot 97^2 + 3 \cdot 97 + 1) + \dots + (3 \cdot 1^3 + 3 \cdot 1 + 1) = 3(99^2 + 97^2 + \dots + 1^2) + (3 \cdot 99 + 97 + \dots + 1) + 50.$$

Сумма квадратов нечетных чисел от 1 до 99 равна

$$1^{2} + 3^{2} + \dots + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3} = \frac{50 \cdot 101 \cdot 99}{3}.$$

Сумма нечетных чисел от 1 до 99 равна $1+3+...+(2n-1)=(2n-1)^2=7500$.

Таким образом, $S = 50 \cdot 101 \cdot 99 + 7500 + 50 = 507500$.

Ответ: 507500.

Критерии проверки заданий 10-го класса

задание	1	2	3	4	5	6
баллы	15	15	15	15	20	20

Всего 100 баллов

Задача 1.

Баллы	
15	Обоснованно получен правильный ответ.
12	При правильном понимании условия задачи и правильном ответе,
	есть замечания к четкости изложения обоснования.
0	Решение не соответствует вышеперечисленным требованиям.

Задача 2.

Баллы	
15	Обоснованно получен правильный ответ.
10	Решение содержит арифметическую ошибку.
5	Не учтен знак дискриминанта.
0	Решение не соответствует вышеперечисленным требованиям.

Задача 3.

Баллы	
15	Обоснованное и грамотно выполненное решение задачи.
12	При правильном ходе построения есть замечания к четкости его
	изложения и обоснования.
5	Верно построен только отрезок $c\sqrt{5}$.
0	Решение не соответствует вышеперечисленным требованиям.

Задача 4.

Баллы	
15	Обоснованное и грамотно выполненное решение задачи.
12	При доказательстве по неравенству Коши нет обоснования
	строгости неравенства.
0	Решение не соответствует вышеперечисленным требованиям.

Задача 5.

Баллы	
20	Обоснованное и грамотно выполненное решение задачи.
12	При верном и обоснованном ходе решения имеется арифметическая
	ошибка или решение недостаточно обосновано.
5	Верно начато решение задачи, получены некоторые промежуточные
	значения, дальнейшее решение неверно или отсутствует.
0	Решение не соответствует вышеперечисленным требованиям.

Задача 6.

Баллы	
20	Обоснованное и грамотно выполненное решение задачи.
17	Решение содержит арифметическую ошибку в конце решения или
	решение недостаточно обосновано.
10	Площадь исходного многоугольника верно представлена как сумма
	чисел.
5	Значение площади исходного многоугольника выражено через
	площади составляющих его более простых многоугольников.
0	Решение не соответствует вышеперечисленным требованиям.